Search results for " 47B10"
showing 2 items of 2 documents
On Pietsch measures for summing operators and dominated polynomials
2012
We relate the injectivity of the canonical map from $C(B_{E'})$ to $L_p(\mu)$, where $\mu$ is a regular Borel probability measure on the closed unit ball $B_{E'}$ of the dual $E'$ of a Banach space $E$ endowed with the weak* topology, to the existence of injective $p$-summing linear operators/$p$-dominated homogeneous polynomials defined on $E$ having $\mu$ as a Pietsch measure. As an application we fill the gap in the proofs of some results of concerning Pietsch-type factorization of dominated polynomials.
Factorization of strongly (p,sigma)-continuous multilinear operators
2013
We introduce the new ideal of strongly-continuous linear operators in order to study the adjoints of the -absolutely continuous linear operators. Starting from this ideal we build a new multi-ideal by using the composition method. We prove the corresponding Pietsch domination theorem and we present a representation of this multi-ideal by a tensor norm. A factorization theorem characterizing the corresponding multi-ideal - which is also new for the linear case - is given. When applied to the case of the Cohen strongly -summing operators, this result gives also a new factorization theorem.